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Abstract

Nuclear interactions of high-energy alpha particles with target nu-
clei important for cosmic ray studies are discussed. Models for elas-
tie, quasi-elastic, and breakup reactions are presented and compared
with experimental data. Energy-dependent interaction cross sections
and secondary spectra are presented based on theoretical models and
the limited experimental data base.

1. Introduction

In this paper we consider theoretical models of alpha-nucleus interactions for the purpose

of developing a data base for describing the transport of cosmic ray alpha particles (4He) and

secondary light ions through bulk materials. Alpha (a) particles represent about 10 12 percent of

the primary galactic cosmic ray flux, second only to the hydrogen component, which represents
86 89 percent of the abundance. Interaction cross sections for 4He-ill collisions have long

been of interest (refs. 1-3) in the understanding of the chemical composition of the primary
cosmic radiation because their interaction is the chief mechanism for 2H and 3He productions

which are absent from the primary sources. More recently, the possibility of long-duration

manned missions beyond the Earth's orbit has resulted in an increased effort to understand the

possible late and genetic effects of galactic cosmic radiation (ref. 4) and to accurately predict
the exposures to be encountered. The large primary alpha component and also the important

secondary alpha component from the fragmentation of heavier elements warrant a study of their

physical interactions in spacecraft materials and tissue.

The internal structure of 4He, which is unique in several aspects, suggests an individual

treatment of the physical interactions. First, this nucleus is the most compact with charge

(matter) radius of 1.67 fm (1.33 fm) in comparison with the lighter nuclei 2H and 3He with

charge (matter) radius of 2.1 fm (1.71 fm) and 1.88 fm (1.45 fm), respectively. The compactness
of 4He is an indication of the large binding energy at about 7 MeV/particle and results in a first

excited state far removed from the ground state at about 20 MeV. Similar to the other light
ions with mass number A < 5, no bound excited states occur for 4He. We note that the first

excitation level of all other nuclei occurs at only a few MeV. Nuclear correlations of dynamical

content are expected to be enhanced because of this compactness which is, in part, due to the
absence of Pauli exclusion effects and to the closed shell structure. The A -- 2, 3 nuclei are
now amenable to exact solution for their internal wave functions using realistic nucleon-nucleon

interactions (refs. 5 8). This is not true for 4He, although variational Monte Carlo approaches

have been used (refs. 9-12). Also, nuclear matter or independent particle models used for the

study of heavy ions are expected to fail for 4He where the concept of a mean field does not
hold. Finally, the description of nuclear fragmentation for light nuclei will be in terms of a

one-step process of direct reaction, rather than the abrasion-ablation picture used for describing

heavy-ion fragmentation (ref. 13).

The interaction cross sections for alpha projectiles consist of the elastic channel, compound

nucleus reactions, stripping and pickup channels, and the fragmentation reactions. For cosmic

ray studies these cross sections are needed over the energy range from a few MeV to above
100A GeV. However, because of the dominance of atomic/molecular interactions at low energies

(including the resulting short range of the ions) and the small primary flux above about 10A GeV,
the energy range from above a few 10's of A MeV to about 10A GeV is most important. The

nuclear absorption cross section imposes an important constraint on the sum of the inelastic
channel cross sections. A second-order solution (refs. 14 and 15) to the coupled channel equations

(refs. 16 and 17) of the optical model in the eikonal approximation has been developed. The
absorption cross sections and elastic scattering distributions for alpha-nucleus collisions are



calculatedby usinga realisticmodel for the 4Heground-stateone-and two-bodydensities.
Thetotal scatteringcrosssectionis alsoevaluated.

An important effectthat resultsfrom the largeseparationenergyfor the first excitedstate
in 4Heis a significantcrosssecti(_nfor inelasticreactionswith compositenucleiwherethealpha
particleremainsintact; i.e.,thetargetnucleusfragmentswhiletheprojectilealphaparticledoes
not fragment.Thisquasi-elastictypeof reactionhasbeendescribedbytheopticalmodel(refs.18
and 19)andis appliedhereto estimatethe fractionalcontributionof quasi-elasticprocessesto
the absorptioncrosssectionfor commonshieldingmaterials.

The fragmentationof light nucleiis often describedby a singlepolediagram(refs.20-22)
in whicha singlenucleonor clusterreactson the target with the remainingpieceof the ion
actingonly asa spectator.This typeof impulseapproximationfailswhenanextendedregionof

the kinematical phase space is considered. We have developed an effective three-body multiple

scattering approach (refs. 23 and 24) to describe the two-body dissociation of light nuclei on

composite targets. The effects of elastic and inelastic fragmentation and final-state interactions
are treated in this model. For 4He this model describes the 3H-p, 3He-n, and d-d final states.

Interactions of knocked-out clusters with the targetare described by the optical model of multiple
scattering, and thus the energy dependence of these 4He fragmentation channels is described.

We apply this model-to calculate integrated cross sections and compare the calculations with

available experimental data. Deuteron production cross sections from 3He and 3H projectiles
and the breakup of 2H may also be evaluated in this model.

The two-body dissociation states and the quasi-elastic scattering account for roughly half of
the absorption cross section when meson production is included. At low energies the stripping

reactions are important, but their importance decreases at high energies because the amplitude

involves the dissociation vertex in an energy-dependent manner. Extensive measurements have
been made for pickup on iH for 4He projectiles. We use tile Serber model (refs. 25 and 26) to

obtain a mass number dependent scaling of these experiments. Estimates of compound nucleus

cross sections can be provided from the EVAP-4 code of reference 27 for light-ion projectiles

below i00A MeV. The remainder of the absorption cross section is shared by the a --* dpn and

_ npnp channels. Theoretical models of these reactions are hampered by the complexity of

the many body final states and the fact that the vertex functions for these breakup modes have
not been evaluated in any realistic model. We note that semiphenomenological methods have

been used with some success for the a _ dpn breakup (ref. 28).

The outline of this paper is as follows: First, the optical model is used to evaluate total,

absorption, and elastic scattering cross sections that are compared with experimental data.

The calculation of the quasi-elastic cross section for inelastically scattered alpha particles is
then described, and predictions for common shielding materials are made. Second, the model

of two-body dissociati0n of light ions is used to predict energy-dependent fragmentation cross

sections. The Serber model for pickup and stripping is used to estimate these cross sections

for alpha projectiles. Third, and finally, a survey of the available experimental data is made
and combined with theoretical predictions to give energy-dependent parameterizations of cross

sections........... for secondary 4He, 3He, 3H, 2H, and 1H in ai_ha-nucleus collisions. A parameterization
for the energy spectrum of secondaries is also presented.

2. The Elastic Channel and Nuclear Absorption

The evaluation of the nuclear absorption cross section proceeds from the elastic scattering
amplitude and the opticM theorem. In the Eikonat coupled channels (ECC) model (refs. 14

and 16), the matrix of scattering amplitudes for all possible projectile-target transitions is given

by

ik z / d2b eiq'b{ei_(b) - i} (1)](q) = 2_r

2



wherebarredquantitiesrepresentmatricesand bold quantitiesrepresentvectors. Here, b is
the impactparametervector,q is the momentumtransfervector,and k is the projectile-target
relative wave number. In equation (1), Z is an ordering operator for the z-coordinate which is

necessary only when noncommuting two-body interactions are considered. The phase elements

of X are defined by matrix elements of arbitrary projectile-target states of the operator

X(b) = _ -_/_c. -_ dz taj(ra - rj + x) (2)
OO

o_,3

where # is the nucleus-nucleus reduced mass, a and j label the projectile and target constituents,

respectively, r is the internal coordinate, x is the relative coordinate with x = (b, z), and taj
is the free two-body scattering amplitude in the overall center-of-mass frame. For a projectile
transition from quantum state n to n / and target transition from _, to _1, we write

Ap'AT r +c_

Xnv,n'v'(b) = E -# ]_ dz' < nv]t_jln'v' > (3)2k cc
a,j

where Ap and A T denote the mass numbers of projectile and target, respectively. Equation (3)
is written in terms of transition densities p as

£/Xnv, n'v'(b) = ----_#E dz dra drj pvv,(rj) pnn,(ra) t_j(r_ + rj - x)
2k .

c_3

(4)

or in terms of transition form factors as

-'zLl .""Xnv,n,v,(b ) = 2k-_) 3 dz dq Fnn,(-q) G_n,,(q ) taj(q )
c_3

(5)

where F and G are the projectile and target one-body form factors, respectively.

The two-body amplitudes must be related to their values in the nucleon-nucleon (NN) center-

of-mass (CM) frame where the physical amplitude fNN is determined by experiments. Making

this transformation and noting that the z-integration in equation (5) can be performed formally
if commuting interactions are assumed reduces equation (5) to

l_j/ eiq. bXnv,n'_¢(b)- 27r_NN d2q Fnn'(-q) G_,u'(q) fNN(q) (6)

where fNN is the two-body scattering amplitude in the NN CM frame. Equation (6) is convenient
for calculations since it is essentially a one-dimensional integration if the form factors are known.

The second-order approximation to the elastic (EL) amplitude is obtained by including all
transitions between the ground and excited states and assuming that transitions between excited

states are negligible. Furthermore, the density of all excited (EXC) states is approximated by
an average excited-state density. The phase matrix is then of the bordered form

X(b) =

( XEL X00,01 X00,10 X00,11

X01,00 XEXC 0 0

X10,00 0 XEX C 0

X 11,00 0 0 XEX C

: : : :

• o .

°oo (7)
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where XEL -_ X00,00. The characteristic equation of this bordered matrix is

- _ )( Exc- T :o (8)

where No is the order of X, A is the eigenvalue, and T 2 is defined by

T2(b)= E XOO,nuXnu,O0

The eigenvalues are then given by

n or u#0

(9)

1 ]2 }112)_1,2 = _(XEL + XEXC) -4- _(XEL -- XEXC) + T 2 (10)

with all others taking the value XEXC. The form of the eigenvalues allows us to treat the

scattering system as an effective two-channel problem with

_ : (XTL T ) (11)
XEXC

Then, from employing Sylvester's theorem we find that

f_c(q) : _ J exp _i(XEL XEXC)

× cos + iXDIF (X2I---FTT2)1-----/2 ] --1 d2b

where the subscript CC denotes coupled channels and the difference (DIF) is given as

(12)

1

XDI F ---- _(XEL -- XEXC)

An expansion of equation (12) reveals, as expected, that XEXC appears only in third-order and

higher order terms in fNN (q). As discussed in reference 14, a reasonable approximation to XEX C

is to assume the ground-state density for the excited states. If XEXC is set equal to XEL we find

(2) -ik/exp(-iq-b)[exp(iXEL) cos T - 1] 425 (13)f_c(q) _ 2--_-

, The coherent approximation (ref. 17) is recovered in the limit of small "I'.

By using closure to perform the summations in equation (9), T 2 is given as

T2(b) = ApAT (1---J-'-_ 2 f d2q d2q t e-iq'b e-iq"b fNN(q)fNN(q')
k,2rrkNN ] J

x [-ApAT F(1)(q) F(1)(q ') G(1)(-q) G(1)(-q ') + (Ap - 1)(A T - 1) F(2)(q,q ') G(2)(-q,-q')

+ (A T - 1) F(1)(q + q') G(2)(-q,-q') + (Ap - 1) F(2)(q, q') G(1)(-q, _qt)] (14)

4
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where F (1) and F (2) (G (1) and G (2)) are the projectile (target) one- and two-body, ground-state

form factors, respectively.

Townsend (ref. 29) has considered Pauli correlation effects between projectile and target

nucleons. Here, the first-order elastic phase is written as

XEL(b) ----XDIR(b) -- XEx(b) (15)

The direct (DIR) term is written as

ApAT/d2q eiq'b F(1)(-q) a(1)(q) fNN(q)XDIR(b)- 27rkNN
(16)

and the exchange (EX) term is written as

ApAT eiq.b
XEx(b)- 27rkiN f d2q F(1)(-q) G(1)(q)

1/x _ d2q t eiq% fNN(q + q') C(q')

We use the parameterization of fNN as

(17)

fNN(q)--(7(p+i) ( 1 )4_kNN exp -- Bq 2 (18)

where kNN is the relative wave number in the two-body system, _ is the two-body scattering

cross section, B is the slope parameter, and p is the ratio of the real part to the imaginary part

of the forward two-body scattering amplitude. Values for the energy-dependent a, B, and p are

found in reference 29. The correlation factor is found as

1 7r e_q2/4d2 (19)
C(q) = _

in reference 29 with d = 1.85 fm -1.

The total (TOT) cross section is found from the elastic amplitude by using the optical theorem

as follows: 41r

CrTOT = T Im f(q = 0) (20)

Equations (13) and (20) show that

Zoo ( 1 exp[--Im(XEL + T)] cos[Re(XEL + T)]aTO T = 47r b db 1 - -_

_ i exp[_im(XE L _ T)] cos[Re(XE L _ T)]
Z )

(21)

where Im and Re denote imaginary and real quantities, respectively. The total absorption (ABS)

cross section is found by using

aTO T = aAB S + aEL (22)

where aEL is the total elastic cross section. Integrating equation (13) by using dD ,_ d2q/k 2 and

equations (21) and (22) yields

Z_ { 1 }aAB S = 2_ b db i - _ exp(-2 Im XEL)[cosh(2 Im T) + cos(2 Re T)] (23)

5



2.1. Model Form Factors

The one-body form factor is written in terms of the charge (CH) form factor as

F (1)(q) = FCH(q)/Fp(q ) (24)

where Fp is the proton form factor taken as e-r2q2/6 with rp = 0.86 fm. For 4He, an excellent

fit to the charge form is given by (ref. 30)

FCH(q ) --=[1 - (0.316q)12]e -(0"681q)2 (25)

The harmonic well model is often used for A _< 20 where the charge form factor is

FCH_--(1 -- sq2)e-aq 2 (26)

and values for parameters s and a are from reference 29. For nuclei where a Woods-Saxon

density is appropriate (A T >_ 20),

po (27)
PCH( r)- l+e(r-R)/c

An exact Fourier transform to obtain the charge form factor for a Woods-Saxon density may be

found in a series solution (ref. 31)

where

The series in equation (29) converges rapidly, and the first three or four terms are accurate for

most applications. Values for=the parameters c and R are taken from reference 29.:

The second-order calculations are difficult because the two-body form factors of the projectile

and target must be known. We next consider the Jastrow method of correlated wave functions
in order to model the form factors of 4He.

F, 47r
CH(q) = qPO ¢(q) (28)

,, , n f -cos(Rq) lre sin(Rq)coth(_rcq)

¢(q) = 7rtte I _ t -_ sinh(_cq)

2c _" r D TM mcq exp(-mR/c) _

- _ m/-___l'-' ---_-c_J (29)

9) o:_ver _L_I the first ]tree or fi
is f( • ;he] _LILdR are t_ t:en from

F_ ) (q, q')

F(1)(q, q') = FCM( q + q')
(31)

6

F(M)(q) (30)
F(1)(q) _-- FCM(q)

By using a coordinate system unconstrained by the nuclear center of mass, we introduce the

model form factors FM (which are related to the intrinsic form factors) given by



with the harmonicoscillatorCM correctionassumedwith

R2q2 )FCM (q) = exp 4A (32)

where R is related to the oscillator parameter.

The Jastrow method of correlated basis functions (ref. 32) introduces a correction factor to

the wave function calculated in a single-particle potential model in order to take into account

the effects of the short-range repulsive part of the nuclear potential on the wave function. The

Jastrow-correlated wave function is written as (ref. 32)

A

qd_(rl'"rA)= _A(r"'rA) H f(ri'rj )
i>j=l

(33)

where _A represents the Slater determinant for the ground state wave function and the

correlation factor f(ri,rj) is assumed to depend only on the relative separation of ri and rj
and obeys

{0 (Iri--rjl---_0) }f(ri, rj) --_ 1 (Iri - rjl Large) (34)

The two-particle density is given by

p(r, r') = N /l_4(r, r', r3,-", rA)12dr3 "-. drA (35)

where N is the normalization constant.

The Jastrow correlation factor contains up to A-particle correlations. Since our considerations

are for two-particle correlations, we consider a low-order approximation to this model (refs. 33

and 34) and write the model two-body density as

pM(x, x') = N ps(X) ps(X') ]g(x, x')l 2 (36)

with

g(x, x') = 1 - e -_(z-x')2 (37)

where _ will determine the correlation length. In equation (36), Ps is a single-particle density

assumed to be determined by the Slater determinant in equation (33).

By using a single-particle wave function of the form

• 8(r) = e-r /2R2 (38)

the one- and two-body form factors of 4He are found as (ref. 15)

F(M ) (q) = _ Ci e -q2/4vi

i=1

(39)

and

(2) r
F_ (q,q)

3

= _ Ci e-q2/4vi e-qt2/4vi e-diq.q I

i=1

(40)



with

and

where

1
ai = _ + fli

f_i = (i- 1)/3

vi=ai--(_?/ai)

di = J3J2aivi

CI =CT/(alVl) 3/2

C2 ------2CT/(a2v2)3/2

C3=CT/(a3v3) 3/2

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

2.2. Results for the Elastic Channel

In figure 1 we show the charge form factor for 4He with the experimental data from refer-

ences 30 and 35. The solid line is obtained using the model form factor from equation (39)
with 1/R 2 = 0.65 fm -2 and/3 -- 2.0 fm -2, and the dash-dot line comes from the parameteri-

zation of equation (25). In figure 2 the two-particle density for 4He is plotted against the relative

10 o

10-1

I0-2

Equation (39)
-- Equation (25)

Experimental

(refs. 30 and 35)

10-3
0 5 10 15

q2, fm-2

Figure 1. Elastic charge form fwctor for 4He.

2O

,¢,

.25
Calculations (eq. (36))

-- - -- Ref. 34 (Jastrow model)

.20 / ,

/ \,

.t5 / \'

, \

_" .IO

,05

_'f'm I

0 1 2 3 4

r, fm

Figure 2. Two-particle density for 4He as function of

relative separation distance r.

separation. The solid line is from equation (36), and for comparison a higher order Jastrow
calculation from reference 34 is shown as the dash-dot line. Both models lead to about the

8



samehealingdistancewhich is directly relatedto the positionof the minimain the one-body
form factor (fig. 1) in our model.In the Jastrowmodelof reference34,the CM constraintwas
neglectedwhichmayaccountfor the differencesin overallmagnitudebetweenthe twomodels.

In figure 3 the elasticcrosssectionfor 4He-4Hescatteringat 635A MeV is shownasa
function of the invariantmomentumtransfert, where t = _q2. The experimental data are

from reference 36. The second-order model shows substantial improvement over the first-order

model, especially at the second diffraction maxima where double scattering dominates and leads
to excellent agreement with the experiment. In figure 4 a similar comparison is made with the
data from reference 37 at 1A GeV.

104

10 3

10 2

-_ 101

E

10 o

10-1

-- Second order

-- - -- First order

Experimental

(ref. 36)

104

103

102

_101

100

10-1

10-2

'\

\

\

.4 .6

-t, (GeV/c) 2

10-2 10-3
0 .2 .8 0

Figure 3. Invariant distribution versus momentum trans-

fer (-t) for &+c_ elastic scattering at 635A MeV.

Second order
-- - -- First order

Experimental

(ref. 37)

\
.... Im,,,I,,,, I .... "1

.2 .4 .6 .8

-t, (GeV/c) 2

Figure 4. Invariant distribution versus momentum trans-

fer (-t) for a+a elastic scattering at 1A GeV.

Second-order calculations become more difficult for heavier targets if realistic form factors

are used since many integrations must be handled numerically in evaluating T(b). In figure 5 we
show a comparison between first- and second-order calculations for elastic 4He on 160 scattering
at 1A GeV with the Jastrow model described above used for 160 in evaluating T(b) using the

appropriate radii for 160. Differences between the bordered and coherent model solutions are
not substantial, which may be due to our choice of form factors for 160 in T(b).

In table 1 the calculations of total and absorption cross sections are compared with experiment

for several laboratory (LAB) energies (ref. 38) for c_ particles reacting with 1H, 4He, and 12C.

The second-order calculations are seen to lead to improved agreement with experiment; however,

differences between the two solutions are only a few percent. We conclude that the second-order

solutions offer improved agreement over the coherent approximation. However, this agreement

is already within a few percent for absorption cross sections. Improvements in elastic spectra

occur only beyond the forward diffraction peak. Important improvements will likely be found
at low energies.

' 9



10 6

,. 104

_10 2

10 0
0

- Second order

1 I I I
.5 1.0 1.5 2.0

q, fm -I

Figure 5. Elastic 4He+160 scattering at 1A GeV.

Table 1. Results for Total and Absorption Cross Sections

Values of ffTOT, mb, for

TLAB, First Second

A MeV order order

Values of O'ABS, mb, for--

First Second

Experiment order order Experiment

o-p

870 123 140 l

I2100 126 142

143 ± 1.6 94

147 ± 0.4 96

101 120 ± 6.2

103 111 ± 5.7

870 359 389 390 4- 6.3 244 253 262 :t: 18.5

2100 368 397 408 + 5.5 249 259 276 ± 15

a_12 C

870 814 829 790 ± 7 520 528 542 ± 16

2100 826 842 835 ± 5 530 536 547 ± 3

3. Quasi-Elastic Scattering

The large energy separation between the 4He ground state and first excited state may lead

to a large cross section for quasi-elastic scattering. In the quasi-elastic process the alpha
projectile loses energy and receives momentum transfer without suffering a change in mass and,

concomitantly, the target nucleus fragments. A significant quasi-elastic (QE) cross section will

be important since this process will contribute to the absorption; however, no secondary particles

are produced from the projectile in the reaction_ The quasi-elastic distributions in momentum

and energy transfer are also used to describe the inclusive breakup of light ions (refs. 23 and 24).
The QE cross section is evaluated next in the high-energy optical model.

3.1 Scattering Formalism

In treating inelastic scattering we assume that the off-diagonal terms in X, denoted by Xo, are

small compared with the diagonal one, _D, and then we expand f from equation (1) in powers

of Xo:

ik f eiq.b ei-_D(b ) ( [i'Xo(b)] m } (49)?(q) = _ d2b _-_ m!
rr_=l

10



We also will make the assumption that the diagonal terms are all represented by the ground-

state elastic phase X. In the remainder of the paper we drop the subscript EL on the elastic

phase because it will appear only in a distorted wave, and its meaning should be apparent to

the reader. By using equation (3) we sum over target final states X (continuum) to find the

inclusive (IN) angular distribution for the projectile when its mass remains unchanged as

d_)IN -- k2(_--_)_ / d2b d2b ' e iq'(b-b') exp {i[X(b) - X+(b')]}

1

X#0m=l

-- < OpOT [iX(b)] m OpX >

× < xo.I TM Iopo: > (50)

Equation (50) allows only for a study of the momentum transfer spectra of the projectile. In

considering the energy loss of the projectile, energy conservation must be treated. By using

continuum states for the target final state, energy conservation leads to

d2a "_ _ k 2 [ d2b d2b t

dfl dEIp ,]IN (2r) 2 J

AT

e iq'(b-b') exp {i [X(D) - X+(D/)] } _ Wm(b,b',0))

m=l

(51)

where E_, is the energy of the projectile in the final state and w is the energy loss of the projectile.
We define

Wm(b, bl,w) - 1 [ dkj ](m,) 2/fi _-_ _(E/-E/)
j=l

>
IL J I

>

(52)

(refs. 18 and 19) where kj is the wave number vector of a knocked-out target nucleon. The

functions Wm are next related to the response functions of the target in the cylindrical geometry
of the eikonal approximation.

The first collision term is written as

W1 (b, b', w) = A2 AT / d2q d2q I eiq'b e-iq'.b'(27rkNN) 2 F(q) f(q t)

× fNN(q) fl_N(q')/ d2k 6(0_- Ek) Gok(q ) G_o(q t)
(53)

where F is the projectile ground-state form factor and Gok is the target transition form factor.

We change variables as
1

= _ (q + q') (54)

= q - q' (55)

x = s - s' (56)

1

y = _ (s + s') (57)

11



and also

such that

R=b-b 1

= l(b +S b t)
z

(58)

(59)

I (WI(R , S,w) -- (2_kNN)2 d2a d2_ e ia'R ei_'s A a +

where we have defined

A(q) = F(q) fNN(q)

and the target response function is

_) A-I- (i:i - g) il:_l(',/3' _O)
(60)

(61)

.1(.,.,.)--I Gk+o('-7) (62)

.... 7 ::-= T-

By following Krimm et al. (ref. 39) we can formally treat the delta function in equation (62) by
introducing a Fourier transform pair

fat (_,/3, t)
eiwt (63)

Then,

R1 (a, fl, t) = S dw e -iwt R1 (o_, _, w) (64)

Rl(a,J,t) =/-_dk e_iEkt Gok (" + _)G+,o (c_ - g) (65)

For a nonrelativistic nucleon we have

k 2

Ek = 2m----_+ eB1 (66)

where eB1 is the binding energy. By assuming plane waves for the target final state in Gok,
equation (65) then becomes

r

i dk e--ieB1 t e_ik2t/2m N ei_. x eij.y elk. xR1 (c_, J, t) = (2_)-_-5 dx dy

where • is the single-particle wave function of the target ground state. Using equations (67)
and (63) gives

-_ f dx dye ia'x e ij'y Joq2mN(W--eB1)X 2 }
Rl(el'fl'w)= x _(y + _) (I)÷(y - _) (w>_eBi) (68)

o < CBx)

The higher order collision term is more complicated because of the enumeration of projectile-

target intermediate states that can occur. A first approximation is to keep only lp-lh excitations

12



of the target (onefor eachinelasticscattering)and assumethat the projectileremainsin the
groundstate (coherentapproximation).

Usingsimilar coordinatechangesasdescribedabove,the rnth-order collision term is found

in the coherent approximation to be

Wm (R, S, w) -= _*P _*T
(m!)2(27rkNN)2m d2aj d213j

x Rrn(al,..., am, j31,..., film, w) (69)

where

Rrn(al,...,arn,_l,...,_rn,W ) -- (2_)rn =

x
2rn-1 (W _ eBm) rn-1

m 2] (m-1)/2
2ran - cBm)E x

j=l

where Rm = 0 for w < eBm. We next consider a simplified representation of the m > 1 terms.

By assuming that the target wave functions are forward peaked, we approximate

Jm-1 m

_m m/-_-_'_ m- 1

1 1-Iraao [ _"_ ](rn - 1)' 2 m-1 -- L2(m-1)/2 -t- 0 ()_Lx 4.
(71)

j=l

where

such that

_m = ¢2mN (w - eBm )

Rm(al,..., am, _1,..-, _m, W) ,_

(72)

(uJ--eBm)m-lm(m-1)! [ (m ]1-I RI aj, _j, 2(__--5i)/2 (73)
j=l

and

Wm(R,S,w)= (W--eBm)m-1 { [(m- 1)!(m!) 2 Wl R, S, _m ]}m2(m_1)/2 (74)

13



A numerical test of the forward-peaked wave function approximation is discussed below. The

energy loss spectrum in a coherent projectile model is given by

d2a ) -- k 2 / d2R d2S eiq "R e×p{i[X(-_)-X+(-_)]}
dr2 dEep IN (271")2

m-1 _m (75)
x _ _-_--_-_Ar (_-_Bm){W1 JR, S, 2(m_-:i)/21} TM

After angular integration, the energy loss spectrum is found as

AT _rn

dEip]iN__. /d2 Sd2"_ .-21mX(S) _i _______('-cBm) m-` {WI [O,S, 2(__,)/,]} m
(76)

The coherent approximation assumes that the projectile remains in the ground state through-
out the scattering. The leading-order correction to the coherent terms occurs in W2 and corre-

sponds to the replacement (ref. 40)

---*A2p{[F(2.1)+(Ap-I)F('I+_)F(c_I-_)]

which, physically, represents the projectile dissociating in the intermediate state. Further
modifications are necessary when correlation effects not included here are treated.

The distribution in momentum transfer to the projectile nucleus may be obtained from

equation (75) after integration over the energy loss. An alternate expression is obtained from

equation (49) or (1) through use of closure without regard to energy thresholds for ejecting

particles into the continuum given by references 40 and 41. Thus,

with

A2pAT / d2q d2q 'l_(R, S)= (27rkNN) 2 e iq'b e-iqb'fNN(q) f+N(q')F(q) F(q') G(q- q')
(79)

14



The distributionsin momentumtransferobtainedfrom equations(75)and (78)areequivalent
if the responsefunctionobeysthe sumrule

f dw RI(Q, w) = G(q- (80)ql, qt)

with similar relationships for higher order terms.

An accurate approximation for obtaining numerical results is to expand the elastic coupling

phase in equation (75) or (78) as

i[X(S+2R)-X+(_-)] =-2ImX(S)-iR.VsReX(S)+... (81)

with

iR. Vs X(S) = -Rcos(¢ R - ¢S) Re X'(S) (82)

where CR and ¢S are azimuthal angles and

/jX'(S)- AFAr q2
_NN dq Jl(qS) fNN(q) F(q) G(q) (83)

We then have, for example,

/0dgt dEp IN (27r) 2 R dR S dS e -2 Im X(S) Jo(qR)Jo {R [Re X'(S)]}

A_ (_ _ cBm)m_1 JR, (84)

The second term in equation (81) physically allows for momentum transfer in elastic scattering
and usually makes only a small contribution (ref. 41).

3.2. Shell Model Response Functions

For light nuclei (A <_ 16), we use shell model harmonic oscillator wave functions. Thus, for
s-shell nucleons,

( 1  3/4e-r2/2R (85)
_s(r) = k_---_ ]

and for p-shell nucleons in a spherical basis with components m,

where RT is the target radii and

{ 1--(x±iy) (m=:l:l)}
rm = ¢_ (87)

z (m = 0)

The s-shell and p-shell probabilities are given, respectively, by

4

Cs = _ (88)
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and A - 4

Cp- A

Prom equation (68) the response function is then

_p_a2 2 2R1(,_,_,_1) = mNP_ e-R_2/4 _ _-Rr_l

(89)

yP4 + i Io

where Io and I1 are modified Bessel functions. Higher order response functions are then

approximated by using equations (73) and (90). The collision term W1 can now be found

in analytic fashion, and higher order terms are approximated by using equation (74).

3.3 Results for Quasi-Elastic Scattering

Theoretical calculations for quasi-elastic aAHe scattering at 1A GeV are compared with

experiment (ref. 42) in figure 6 for several scattering angles. The calculations shown are
made with the approximation of equation (75). For consistency we show only the coherent
contributions since we have not formulated the corrections for incoherent projectile motion

beyond W2. The multiple scattering structure is apparent with single inelastic collisions dom-

inating at a small momentum transfer and the higher order contributions increasing in im-
portance with q. In figure 6 the second collision term is seen to peak at a smaller energy

v
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Sum of first and second terms
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Figure 6. Momentum spectra of a particles in _-4He collisions at 1A GeV for scattering angles of 2.112 °

(q = 1.31 fro-i), 3.094 ° (q = 1.92 fro-l), 3.63 ° (q = 2.25 fm-1), and 4.552 ° (q = 2.82 fm-1).

16

=

z

i

=
F



loss than the first term because of the sharing of the total momentum transfer between two
scatterings. This effect keeps the position of the theoretical peak in good agreement with the
experiment. The strengths of the distributions compare fairly well with experiment except at
the largest momentum transfers. This discrepancy grows when calculations are compared with
the larger angle data of reference 40 (not shown), and it is attributed, at least partially, to our
use of a Gaussian wave function for the 4He ground state.

In figure 7 we illustrate the accuracy of the approximation of equation (73) for the term W2
for a-a scattering at 0 -- 3.63 °. Incoherent effects are shown to significantly reduce the second
collision term. Correlations among projectile nucleons will thus play a role in understanding the
quasi-elastic peak.

lO 3

r
_ -
,.Q

E
_ I0 2

!01
6.6

......... Coherent model with

forward-peaked

approximation (eq. (73))

.... Coherent model (eq. (70))
__m Incoherent model

m _ __ Incoherent model with forward-

peaked approximation

# ,
It_/J;_ J I I

6.7 6.8 6.9 7.0

PLAB' GeV/c

Figure 7. Comparison of calculations of W2 in various approximations for a-4He scattering at 0 = 3.63 °. Solid curve

is exact incoherent result, dash-dot curve is incoherent result with forward-peaked wave function approximation,

dashed-line curve is exact coherent result, and dotted curve is coherent result with forward-peaked wave function

approximation.

In figure 8 we show results for quasi-elastic alpha scattering on 160 at 1A GeV for scattering
angles of 1° and 4 °. The higher order terms are seen to grow in importance with increasing
energy loss and momentum transfers.

In figures 9-11 we compare our calculations with the experiments of Ableev et al. (refs. 43

and 44) for the inclusive scattering cross section versus the invariant momentum transfer on 12C,
27A1, and 64Cu targets at 3.6A GeV. The measurements correspond with the sum of the elastic

and quasi-elastic cross sections. In the figures the calculations are denoted as elastic scattering
using the first-order optical model (dotted line), the quasi-elastic part using equation (78)
(dashed line), and total scattering which is the sum of the elastic and quasi-elastic cross sections
(solid line). Agreement with experiment is seen to be quite good.

In figure 12 we show predictions for the total quasi-elastic cross section for o_+12C scattering
as a function of laboratory energy. The energy dependence of the cross section follows roughly
that of the nuclear absorption cross section and is seen to make up almost 10 percent of the
absorption. In figure 13 we show predictions for o_+160 scattering where similar conclusions
apply.
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Figure 13. Prediction of quasi-elastic c_+l{iO total cross section versus laboratory energy.

4. Light-Ion Fragmentation on Nuclear Targets

The fragmentation of 4He is somewhat simpler than that of heavier nuclei in that there are
only a small number of final states that can occur. These reactions are

3He + n + X (91a)

3H +p + X (91b)

a + T _ d + d + X (91c)

d + n +p + X (91d)

n + n +p+p + X (91e)

where X is the final target state. Each of the reactions in equations (91) can occur with or
without meson production if sufficient energy is available. The reactions in equations (91) are
not exhaustive of the absorption processes; most notable are the compound nuclear and pickup
channels that are important at low energies. A model for the two-body dissociation of light ions
has been developed (refs. 23, 24, and 45) that describes the first three reactions in equations (91),
which we now discuss.
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4.1. Two-Body Dissociation Theory

For an inclusive reaction involving the two-body dissociation of the projectile, we write

P + T-* a + b+ X (92)

where a and b are assumed to be clusters present initially in the projectile and X is the final

unobserved target state. We consider the case where a is the observed projectile fragment in the
measurement and note that the unobserved target states must be summed over in evaluating

the cross section. A summation over possible states of the particle b should also be considered.

By using relativistic kinematics, the transition amplitude (T) for equation (92) is related to
the Lorentz invariant momentum distribution for producing the fragment a by

do _ / AT mEa-'_p a = Ea dPb E H dpj 5(pf- pi) 5(Ef- Ei) ITfil 2 (93)
m=lj=l

where f and i label the final and initial states, respectively, /_ is the relative projectile-target

velocity, and the summation in equation (93) is over the possible configurations of target particles
in the final state. A useful approximation to equation (93) is to consider the final target state

as an effective particle X and apply energy conservation in an approximate manner. Here we
consider an effective three-body problem

Ea dpada _ (21r)4/3 / d_b_ EX ITfil2 (94)

where the phase space factor is given by

EaEbExP 2
]C=

pb(Eb 4- EX) 4- paE b cos(_a 4- _b)
(95)

In equation (94) we are ignoring the mass spectrum of the final target states in imposing energy
conservation, and we will assume that M X ,-_ MT.

The transition amplitude can be written as a three-body problem of a - T, b T, and a - b

interactions when rearrangement channels are neglected and with the understanding that all

target final and intermediate states must be summed. Using the Faddeev method allows us to

consider the multiple scattering series generated by the coupled set of integral equations

_- = _a 4- _b 4- _T (96)

i
with

a

_T=

_b_+ _b_Co(?b+ ?_)

_ar + _ar Vo(_° + _r)

_ab+ _b Go(__+ _b)

where TaT, TbT, and Tab are the "two-body" amplitudes that are the transition operators for

aT, bT, or ab scattering, respectively, in the projectile target space and where the Green's

function in the impulse approximation is

-1k_a k_ k_: + i, (97)Go = E- 2m----: - -2m b 2rex

2O



We consider the leading-order corrections to the pole approximation by truncating equation (96)
as

_--- (1 + TabGo) (TaT + TbT + TaTGoTbT + TbTGoTaT) (98)

and replacing 7"aT and 7"bT by their on-shell values. However, equation (98) allows for all orders
of multiple scattering by assuming the dominance of the ab cluster in the projectile and the fact
that ab scatters only after interaction with the target.

The first-order terms of Tfi are shown in figure 14. In figure 14(a) the fragment a is the

spectator with the unobserved fragment b interacting with the target. In figure 14(b) the roles
of a and b are reversed with b being the spectator. These terms are written as

Q)(:) = ¢(Ua) TbX( 8v/_, Q) +¢(Ub) Tax( 8x/_aT, Q) (99)

where ¢ is the overlap function representing the virtual projectile decay, P --* a + b, v/S is the
invariant energy for the quasi-scattering of cluster on the target, Q is the total momentum
transfer in the reaction Q -- PT - PX, and

ma

Ua = Pa - --Pp (100)
mp

Ub = --Pb + _m---_bPp = Q - Pa (101)

From equations (100) and (101) we expect the first term in equation (99) to dominate at small
Pa. In equation (99) the amplitudes TiT are half-off shell, where j is either a or b, but are
assumed on-shell in a high-energy approximation.

PT PX PT PX

K Kv P

Pb a

Pp Pp

Pb

(a) Spectator term. (b) Participant term.

Figure 14. Terms for projectile fragmentation.

In figure 15 corrections for final-state interactions (FSI) between the projectile fragments are
shown. The FSI diagram (fig. 15(a)) leads to the integral

= Tbx( Q) f dk
2#a b ¢ (k + m___Q) Tab(k, Pab)mp ]

pa2b -- k 2 + ie

(102)

where Pab is the relative momentum. We follow references 46 48 and use an off-shell separable

T-amplitude for the FSI where the overlap function is used to replace the Yamaguchi poten-
tial form factors, thus ensuring orthogonality between the bound and scattering states of a and b.
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(a) Spectator term. (b) Participant term.

Figure 15. Terms for final-state interaction.

The higher partial waves are estimated using the Glauber amplitude for ab elastic scattering.

The terms in figures 14 and 15 are combined as

_Jl) = ¢(ua) TbX(Sv/_'T, Q) + ¢(Ub) Tax(Sv_-_aT, Q) (103)

where the distorted overlap function ¢ is defined as

D (Pab, 2m___a.O'_mp -,]

¢(Ua) = ¢(Ua) - ¢(Pab) D(Pab , O)

iPab sin0cos0 dO ¢ Pab _ + -- Q lab 2pabsin (104)
2_ mp

and

D(p,q) = -/dk ¢ (k+ p2_)_ (a2k2 ++ iTk2) ¢(k) (105)

where a is related to the a - b separation energy es by a 2 = -2#abes • The energy-dependent

parameters of the two-body amplitudes in lab are taken from reference 29 with the two-body
cross sections allowed to smoothly fall to 0 below 20 MeV such that the s-wave part dominates

at low energies.

In equation (103) the decay amplitude ¢ is written in the CM frame; however this amplitude
is usually parameterized in the projectile rest frame. We transform to the projectile rest frame

using

[ Ea(Ep- Ea)Ep.] 1/2
¢(Ua) = [E_-- _ E'_)mpJ ¢'(Pta) (106)

where primed variables represent projectile frame quantities. Using the parameterization

ai (107)
¢'(p') = + 2

i=1 _i

with al = a and _ being a normalization constant allows the dispersion integral in equa-

tion (105) to be evaluated in analytic form. Values for the vertex function parameters are listed

in table 2. The overlap probability [Z] 2 is also listed in table 2.

In figure 16 we show the rescattering-type correction where both a and b interact with the

target. In figure 17 the corrections for FSI to the rescattering are shown. These terms are almost

always neglected for composite-composite breakup reactions. For figure 16 we write

ma

T(2): 2#aT i dq2TbT(Q- q2)¢ (Pa- mpPP- Q) TaT(q2) (108)
- (2PAX"<12)+iT
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Table 2. Overlap Function Parameters

Projectile Es, MeV al, fm -1

d--* n-p

3H -, d- n

3He --* d - p

4He --, 3H _ p

4He --* 4He - n

4He _ d- d

2.22

7.10

7.10

19.82

20.58

23.85

0.232

.448

.420

.846

.863

1.070

aFor a3 = 0: al -- 1; a2 -- -1. For a3 # 0: al -- 1; a2 =
-(

o_2, fm -1

1.434

.92

.92

1.15

1.65

1.60

0

0

0

1.65

1.65

2.50

- a_). a3 = -al -a2.

IZl2

1.00

.85

.85

.60

.75

.50

PT _ PX

KbJ_ "'_Pa

PP _a "Pb

(a) Spectator term.

PT KX PX

pp _K b "_- Pa

(b) Participant term.

Figure 16. Rescattering corrections.

PT _ PX

ee_._...- --u Kb.

PT _ PX

Pa

(a) Spectator term. (b) Participant term.

Figure 17. Rescattering corrections with final-state interaction.

with a similar contribution occurring when the roles of a and b are reversed and where PaX is
the relative a and X momentum in the final state.

For figure 17 we find that

,T(f?), f Tab(kab, Pab)=2#ab dkab 2 _k 2
Pab ab --t- ie

ma

f TbT(Q-q2)¢(kab-q2-mpQ)TaT(q2) (109)x dq2 _q2 mo)]÷
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Equation (109) is considered so that the rescattering corrections can be treated in a consistent
manner with the first-order terms because the fragment FSI will occur at a relatively low energy

compared with the aT or bT motion. The contribution from equation (109) should be most

important for small Pab, and we assume that PX >> Pab or kab in order to reduce the integral to

a manageable form. We can then combine equations (108) and (109) in a distorted-wave form
as

"T)2 ) ,_ 27r2i#aT J[x dx TbT(Q -- x) _(X, pa, Q) TaT(X ) (110)
PaX

where

'_ (mamp ) 2pabpPTpaX¢(X, pa, Q)=¢ pa----pp--X -- --_
#aTPX

ma

S dk + (k-x- in. Q) Tab(k, Pab) (Ill)×

2 _ k 2 + 777Pab

where x = -2pa X cos0q2 02, and the second term in equation (111) is evaluated similar to that

in equation (104). In equation (110) the target final and intermediate states must be considered

for inelastic fragmentation.

4.2. Elastic and Inelastic Fragmentation

A convenient way to handle the target state summations is to separate the momentum
distribution in equation (94) into elastic and inelastic terms corresponding to the final target

state. In elastic fragmentation the target remains in the ground state, and in inelastic

fragmentation it remains in the target fragments. This separation is given as

Ea_pa =Ea dpa EL IN

Using

-eiJ Tij (113)fij-

where eij = EiEj/(E i + Ej) and defining the internal momentum distribution • of the fragments |

(in units of (MeV/c) -3/2 where c denotes the speed of light) by ¢ = (2z_)3/2_ allows us to write b
for elastic breakup

"a (d_pa) _-1- i d.PjC IMELi2 (114)
EL /7

where

-1 1
,¢IEL---- -- _(Ua) AT(Q)- -- _(Ub) faT(q)

ebX eaX

+ #aT x dx fbT(Q -- x)¢(x, Pa, Q) faT(x)
2eaX ebTPaX

+ #bT y dy faT(Q - Y)_(Y, Pb, Q) fbT(Y) (115)
2eaTebXPbX

where faT is the elastic amplitude that is evaluated in the coherent approximation to the optical
model.
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Forinelasticbreakupwehave

(") 'IEa _Pa IN = 7 dab_ _ IMINt2
x:/:0

(116)

where the first-order terms are given as

eTbX d°b 1 do aIM/_)I2 = I,_(ua)t2 d--fl--_iN(q) + _7- I_(ub)l 2 d_N(Q)
X#O eaX

[- --

do- ab

1 {_(Ua)_+(Ub)+_+(Ua)_(Ub)} d--_iN (q) (117)
eaX ebX

and with the definitions

do -a

dQIN
- _ t< Xa I']<,T(Q) ITa > 12

x#o

(118)

and

dot ab

- _ < aTIf+T(Q)laZ >< Xbl']br(Q)tbT > (119)
d_tiN

x#0

Equation (118) is just the inclusive distribution for the reaction a + T --* a + X which
corresponds to equation (78) when the optical model is used. The cross section of equation (119)

is an interference effect that occurs when there are two virtual projectile clusters available

to fragment the target. At high energies we use an on-shell approximation to evaluate

equation (119) which is an extension of the optical model result in equation (78). Thus,

daab PaXPbX i d2b d2b' eiq'(b-b')exp{i[XaT(b)-X'bT{b')]) [erlabT(b'b')-I]
dfllN (27r) 2

(120)

where

AaAbAT i d2q d2q' eiq'b e-iq"b# fNN(q)fNN(qt)Fa(q)Fb(q') G(q- qt)l-labT- (27rkNN) 2
(121)

The higher order inelastic terms are numerous and include terms where both a and b excite

the target, only a single cluster excites the target with the second scattering elastically, and
the interference terms between the second-order and first-order terms that lead to identical final

target states. These terms must include both orderings for a scattering prior to b, and vice versa.
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As an example of such processes, double scattering in which only one projectile cluster excites

the target nucleus is written as

IM[N2)I2 = (#aT )2/
x dx x' dx' _(x, pa, Q) 5 + (x', pa, Q)

\ 2eaX ebTPaX

da b da a . x I. daa - I. dab ]
× - x,q - x') ) + - x,q - x')

Ja_EL a_qN a_tEL _IN

+ \2_aTebXPbXl y dy y'dy t _(y, pb, Q)_+(y',Pb, Q)

[da a t dab da b . da ]x [d-_EL (Q - y, Q - y )d-_iN (y, y') + d--_EL (Y, Y')d--_IN (Q - Y, Q - Y') (122)

where we have defined

d_a (x, xt) = f(x) f+(x')
d_Ea

(123)

and

dff_____J(x, xt ) = p2x / d2b d2b ' eixb e-ix'.b'
draiN (27r) 2

exp (i [XjT(b)- X+T(b')]) (erljr(b'b')--I)

(124)

4.3. Impulse Terms for Inclusive Deuteron Production

In an inclusive measurement the reactions in equations (91c) and (91d) are not distinguished.

The reaction in equation (91d) is more difficult because of its four-body final state with at least
three relative motions needed to be considered. Also, the vertex function for 4He _ npd has not

been evaluated. We estimate the energy spectra for equation (91b) by considering the impulse
terms for this reaction. Higher order scattering terms contribute largely as a normalization
correction, and effecting the tails of these spectra will be considered elsewhere.

In figure 18 we show the impulse terms for inclusive deuteron production. These terms are
written as

7"fi = Cd(Pd) Tdx(Q) + Cd(Pd -- Q) TdT(Q) + Cdn(Pd, PdX) Tpx(Q)

+ Cdp(Pd, PdX) TnX(Q) + -¢np(Pd, Pnp) Tdx(Q) (125)

where Cd is the a ---*dd vertex and ¢i" is the a _ dnp vertex. We approximate the -_ij vertex
4 .

function by assuming that the weak binding of the deuteron is such that a correlated neutron-
proton pair in 4He closely resembles a deuteron cluster in the 4He ground state. We then assume
that

f Cdp(Pd, _" Cd(Pd) (126)Pdp) dPdp

The calculation of the momentum distribution for inclusive deuteron production then closely
resembles the evaluation of the impulse terms for the two-body dissociation. We note that the

reactions in equations (91c) and (91d) are orthogonal in the projectile Hilbert space.
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d

n

x

4.4. Results for 4He Breakup

We first compare our results with experimental data for 1H targets where inelastic breakup
does not occur. In figure 19 the angular distribution for 3He production in 1.02A GeV c_ particles

on 1H collisions is compared with the experimental data of Bizard et al. (ref. 49). Contributions

from various breakup terms are labeled on the figure with the total (solid line) agreeing quite
well with experiment except at the largest angles.

In table 3 predictions of total production cross sections for 3He and 3H are compared with

experimental data from references 49-51. The data from Webber (ref. 50) are preliminary.

We note that Webber reports that ap < (r3H; this cannot be correct because the mechanism

for producing 3H will always produce a proton, and several other mechanisms for producing

protons exist from equations (91). An error in distinguishing Z -- 1 fragments is probably at
fault. Agreement between theory and experiment is satisfactory. Calculations were made with

fixed-energy NN parameters. This ambiguity in on-shell amplitudes will be most important at
lower energies (<500 MeV) and for light targets where slope parameters are more important, and

thus it should be studied in more detail. The absence of pion production in the model prevents

a realistic comparison much higher than 1A GeV for total cross sections. In table 4 predictions

are given for the production of 3He from 4He and for deuterons from 3He on several targets.

Vertex function parameters for 3He -- pd are estimated from Kok and Rinat (ref. 52). For

composite targets the higher order terms in equation (98) were not included because of the large
computational time required. The higher order terms are expected to increase in importance for
heavier targets and lower energies.

Calculations of the longitudinal momentum distribution for triton production at 1.9A GeV

are compared with experiment (ref. 22) in figure 20. The dash-dot line is the plane-wave-
impulse approximation (PWIA) for proton knockout and clearly underestimates the data.

This discrepancy would be only partially resolved by using a wave function with higher
momentum components. The short dotted line and the dash-dot line are the impulse terms
with FSI for proton and triton exchange, respectively. Note that the final-state interaction

causes enhancement in the cross section at large momenta. This conclusion was also found

in reference 53 which used a Gaussian wave function and the Glauber model (ref. 54) for
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Figure 19. Angular distribution for a+lH -+ 3He at 1.02A GeV.

Table 3. Comparisons of Calculations With Experiments of Webber (ref. 50)

for A = 3 Fragment Production From/He

[Calculations are given in parentheses]

(a) _+1_C _ Ar (b) a+tH --, Ar

TLAB, A MeV (ran, mb a3rle, mb

203.3 93.1 + 9.3 (77.2) 60.4 + 6.0 (79.3)

377.1 79 =t: 7.9 (59.9) 66.9 3= 6.7 (60.9)

519.9 (62.1) 69.4 d= 6.9 (59.8)
7=

TLAB, A MeV O'3He , mb

377.1 26.3 ± 2.6 (19.5)

519.9 26.4 + 2.6 (20.8)

1025 24.1 3= 1.9 (22.5)

Table 4. Calculations of Fragmentation Cross Sections

for Light-Ion Breakup

(a) o+AT ---* 3He (b) 3He+AT _ 2H

Values of Cr3He , mb, for

TLAB, A MeV 12C 160 27A1

500 59.8 [ 72.3 96.8

(

1000 64.1 [ 74.7 100.1

Values of o'2H, mb, for--

TLAB, A MeV 160 27AI

500 158.0 211.2

1000 128.5 184.0
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1.05A GeV a particles. The off-shell s-wave part of the FSI dominates this effect. Including the

Glauber amplitude for higher partial waves represents only about a 10-percent correction. The

inflection in the dash-dot line near 0.2 GeV/c is caused by the interference between the s-wave

and Glauber terms. The solid line and the dashed line in figure 20 are the sum of all terms with

and without the effects of interference between the diagrams, respectively. The full calculation

provides a good description of the data out to 0.4 GeV/c, but it underestimates at larger values.

The effects of interference between diagrams are clearly important.

In figure 21, calculations of the transverse momentum distribution for a beam of energy of

2.09A GeV are compared with the experiment of Anderson et al. (refs. 55 and 56). Triton

exchange is seen to contribute only for small values of PT. The proton knockout term with

FSI provides a good representation of the data out to 0.6 GeV/c and falls below the data at

higher values. Calculations of pion production in deuteron breakup (ref. 57) suggest that we

should expect some contribution from this mechanism at large momentum. In figures 22 and 23,

calculations of the transverse momentum distribution at 0.385 and 1.041A GeV, respectively,

are shown in comparison with data from references 56 and 57. The total calculation agrees well

with the experiment.

w _ __ PWlA (proton exchange)
........ Proton exchange with FSI

105 - _ Sum with interference

---. - - - - Triton exchange with FSI
grf_. [] Experimental with error

104 ...... "_ (ref. 22)

103 \

102 " ,,

t_ 100

i0-1 , , , , ""_.._ n [] ,

0 .1 .2 .3 .4 .5 .6

p, GeV/c

Figure 20. Comparison of calculations of longitudi-

nal momentum distribution for 3H production in

c_-12C collisions at 1.9A GeV with experimental

data (ref. 22). Dotted curve is proton exchange

term with FSI, dash-dot curve is triton exchange

with FSI, dashed-line curve is full calculation ne-

glecting interference effects, and solid curve includes

interference.

¢D

e
>
_9

t_

l05
-- - -- PWIA (proton exchange)
........ Proton exchange with FSI

_!_ Sum with interference
1041 \,'_ Triton exchange with FSI

',_[] [] Experimental with error

"',_ (ref. 22)

103 \\",2 --.

',\

100, , ", \, M•P ,
0 .2 .4 .6 .8 1.0

p, GeV/c

Figure 21. Comparison of calculations of transverse

momentum distribution for 3H production in c_-12C

collisions at 2.09A GeV with experimental data.

The calculations in figures 20-23 show that a PWIA extraction of the internal momentum

distribution is not possible in inclusive c_-nucleus scattering. However, the agreement achieved

suggests that a reasonable wave function has been used because several scattering mechanisms

contribute and provide a strong constraint on model wave functions. The overlap function

employed in our calculations was also found to give good agreement to experiments for pion-

induced breakup at 5 GeV/c in reference 48. We also can conclude that a wave function with

a minimum below 0.5 GeV/c is not in agreement with the c_-12C data (refs. 53 and 58).

The corrections to the impulse diagrams considered will not hide such a minimum and do

not appear in the data. In figure 24, we compare the momentum distribution used here with

those extracted in coincidence measurements with 426 MeV electrons (ref. 59) and 500 MeV

protons (ref. 21). These experimental distributions will contain distortion effects peculiar to
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Figure 22. Comparison of calculations of transverse

momentum distribution for 3H production in a-12C

collisions at 0.385A GeV with experimental data.
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Figure 23. Comparison of calculations of transverse

momentum distribution for 3H production in a-12C

collisions at 1.041A GeV with experimental data.
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Figure 24. Momentum distribution for 3H in 4tie

ground state from (e, ep) and (p, 2p) reactions com-

pared with distribution used in calculations.
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p, GeV/c

Figure 25. Double-cluster scattering contributions to

3He production on t_c at 385A MeV.

the kinematics employed. Nevertheless, the comparison suggests a common shape out to about

0.4 GeV/c.

. The contributions from the double-cluster Scattering-tyPe of terms (eqs:-(109)'(112)) are

illustrated in figures 25-26 for 3He production on 12C. The contribution from these rescattering
corrections is seen to be small in the longitudinal distribution; however they should increase, in

_, importance at larger angles and for lower energies.

The momentum distribution for a deuteron pair in 4He was fit to the Monte Carlo calculations
of reference 10 as shown in figure 27. Calculations are shown in figures 28 and 29 with

• contributions from the various impulse terms shown. A significant contribution is seen for
elastic fragmentation at forward angles.
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Figure 26. Double-cluster scattering contributions to

3He production on 12C at 1041A MeV.
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Figure 28. Inclusive d production in c_+p reaction at
1.05A GeV.
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Figure 27. Comparison of momentum distribution for

dd in 4He Monte Carlo calculations of reference 10

with three-term Yukawa fit.

Total
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Figure 29. Inclusive d production in a-12C collisions at
2.09A GeV.

Overall, comparing our results with experimental data for 4He fragmentation is encouraging.

We can identify several areas that will lead to greater predictive capability. The inclusive

scattering model for cluster-target interactions should be extended to include charge exchange

which will become important below several hundred MeV/amu. Also, these distributions should

be extended to include pion production in order to make predictions at higher energies. Pion

absorption on alpha clusters (3He, 3H, and 2H) should then be studied. Final-state interaction

effects in 2H production must be included in order to make predictions of total-production

cross sections. A first attempt will consider just FSI between two fragments while summing

all contributions. Also, off-shell effects in higher partial waves and spin-orbit coupling effects

on the FSI should be estimated. The two-body amplitudes employed should be improved for
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accuracy at large momentum transfers, especially for 1H targets, and should include nuclear
medium effects that will become important at lower energies. Finally, an improved treatment of

the many-body phase space for inelastic fragmentation would result from the use of equation (93)
with the distribution of equation (75) rather than the approximation of the three-body phase
space (eq. (94)) employed here.

5. Parametric Data Base

5.1. Interaction Cross Sections

We next discuss parameterizations of interaction cross sections and energy spectra for alpha
particles in common shielding materials. The work of Meyer (ref. 2) gives a complete summary

of a-ill cross sections based on measurements up to 1972. Parameterizations of 3H and 3He
production on IH below 300 MeV/amu were discussed in reference 60. An extensive list of
earlier references of experiments is given in reference 2. More recent experiments are absorption
cross sections between 18 and 48 MeV in reference 61. In reference 62, deuteron production
at 1.4A GeV was measured with the inclusive deuteron production cross section reported at
30.64 =t=0.62 mb. Also, postdating the compilation by Meyer is the result for A = 3 fragments in
references 49 and 50. The most important shortcomings of the data base for 4He-1H interactions

are high-energy measurements above a few GeV and a complete absence of data for nucleon
production cross sections.

By using our theoretical estimates and the existing data, we parameterize the fragmentation
cross sections for 3He, 3H, and 2H production on 1H as

1 + e(Tth-T)/6"8 -- 1 1 -- 1 -I-6.-_-e-T/34

x + 6 T
(1 0.3 _F_)e -(T-78°)/23°° (127)

and

I(+ e(Tth_T)/7 -- 1 1 1 + _e-T/55 ]

1 8 T (12s)
• _) e-(T-7_O)/_50°

ad=17[ 2 ]{ 0"21[(T/145)--ll}e-T/3000 (129)1+ e(T_h-T)/12- 1 1+ _+_76-

where Tth is the threshold energy for the breakup reaction listed in table 5 (ref. 63) and T is the
kinetic energy in units._o_f _A_MeV. The low-energy behavior of equation (127) resembles that of
reference 60. The pickup cross section is parameterize d as i:

o'PiCKUP = 48e -(T-Tth)l7/1350 (130)
i : _ : i c,: :_::_L: • 'i_i -_. _2.

and contributes to both the inclusive 3ile and 2H production cross sections. At low energies

the resonance 5Li occurs which is not considered here. The parameterizations are compared
with experimental data in figures 30-32. All cross sections are set constant above 3A GeV. The
energy variations near thresholds and the pion production region are accurately reproduced.
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Table 5. Thresholds and Q-Values for p+4He

Reaction

4He(p, d)3He

4He(p, 2p)3He

4He(p, pn)3He

tHe(p, pd)2H

4He(p, ppn)2H

4He(p, ppnn) t H

Q, MeV

(a)

-18.354

-19.815

-20.578

-23.848

-26.072

-28.297

Threshold, MeV

22.94

24.77

25.72

29.81

32.59

35.37

aData taken from references 60 and 63.
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Figure 30. Comparison of parametric model for 3He

production in a-p collisions with experimental
data.
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Figure 31. Comparison of parametric model for 3H pro-

duction in a-p collisions with experimental data.
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Figure 32. Comparison of parametric model for 2H production in c_-p collisions with experimental data.
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For the 1H target the absorption (ABS) cross section below 80 MeV is assumed as

_rAB S = 0"3He + or3H q- or2 H -t- (rpICKUP (131)

Above 80 MeV (and below 80 MeV for A T > 1), the energy-dependent parameterization of
Townsend and Wilson (ref. 64) is used which is given by

ahBS = 101r fl(E) IR4He + RAT -- 1.26 di(E)] _ (132)

where
5

_(E) = 1 +
(133)

1 1 0.292e_T/792 cos(0.229T0.453)
: 0.2+ 2--;+

with a normalization correction of 0.95 used for 1H and the argument of the cosine function given
in radians. In equation (132) the nuclear matter radii are used. The absorption cross section for

a+lH is shown in figure 33 which presents an excellent reproduction of the experimental data.

The proton and neutron production are expected to rise dramatically above pion production
thresholds since two-body collisions will be predominantly inelastic leading to pion absorption
in the A --- 3 or A = 2 clusters. Pion production has not been treated in our theoretical
considerations. However, the expected rise in proton and neutron cross sections occurs if we
simply balance the absorption cross section with channels that do not lead to proton and neutron
production, respectively, as shown in figure 34.

-- Calculations

I40F _ Experimental with error 140

1201- _ t 120

100 100

"_ 80 .m 80

E
6 60<60

404O

2O

"in01 ........ i ........ | ...... i'04102 103

TLA B, MeV/amu

Figure 33. Comparison of parametric model for a+lH

absorption cross section with experimental data.

Proton
Neutron

,f
10 2 103 104

TLAB, MeV/amu

Figure 34. Parametric model predictions for proton

production and neutron production in a+lH

collisions.

The experimental data base for composite targets is extremely small. A comparison of
equation (132) with data for _+12C absorption cross sections is shown in figure 35. Agreenient
is excellent and previous analyses (ref. 63) suggest similar agreement for other targets. The
stripping reactions become more complicated for AT > 1 because several of these channels exist,
and stripping or pickup to excited states of the target contributes to the complication. We
follow Serber (ref. 25) and assume a surface reaction for nucleon stripping on 4He and then
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Figure 35. Comparison of parametric model for a+12C

absorption cross sections with experimental data.
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Figure 36. Comparison of fits for 3H and 3He produc-

tion cross sections with experimental data.

• 1/3 Since 4He is its own mirror nuclei, we will ignore coulombequation (130) is scaled by A T .

effects and assume that equation (130) is used for both 3He and 3H production in stripping

reactions. Note that 3H is not produced in stripping on 1H. A slight overestimate may occur

because a small contribution from 3He exchange is expected in the reaction a+lH _ °He+d.

We also ignore any d production in the stripping process for AT > 1. In figure 36 the results for

3H and 3He production on 12C are shown. The fragmentation cross section is scaled as A_ 31 for

these fragments. The measurements are from Webber (ref. 50), and the data at 3.6A GeV are

from reference 65.

In table 6 we compare parametric fits to secondary yields for charge fragments at 3.6A GeV

for several targets as measured in reference 65. The experiment of reference 65 measured

only peripheral events with detection angles less than 5 °. We expect the measurements of

1H secondaries to be underestimates. The multiplicity for nucleon production from 4He at high

energies is between 1 and 1.2 as compared with a value of 2 assumed in existing cosmic ray

codes. For 2H we have used a scaling of A_f 4 from our parameterization in equation (129).

Table 6. Comparison of Experimental Fragmentation Cross Sections for 4He

Projectiles at 3.6A GeV With Model Fits

[Calculations are given in parentheses]

Values of Crv, mb, for targets a oK

Fragment Li C

1H

2H

3H

3He

166 4- 13 (536.6)
84 i 15 (68.2)
47 + 5 (52.7)
48±5 (48.1)

A1

227 ± 20 (592.0) 319 4- 34 (823.9)

91 4- 27 (91.2) 113 ± 38 (128.2)

58 ± 9 (65.4) 73 + 20 (84.1)

49 4- 8 (59.6) 70 4- 15 (76.7)

Cu

417 + 45 (1294.9)--

159+45 (184.2)

95+ 14 (109.9)

95±20 (100.2)

aData were taken from reference 65 which measured only particles in peripheral events (6 < 5°).
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5.2. Secondary Energy SFectra

The energy spectra of secondary particles is expected to be governed by the internal

momentum distribution of the projectile nucleons with a weak dependence on target mass

number from dynamic effects. At low energies, kinematic restrictions limit the energy losses

possible beyond any restriction provided by the internal momentum distribution. The energy
spectra of secondaries from fragmentation is parameterized as

da V/_ aF ¢SF)2/2W2]d-E-F = _ exp [-(T- To + (134)

where the width WF, downshift 5F, and beam energy To are in units of A MeV. Values derived

from integrating the inclusive momentum distribution of equation (112) over all angles are given

in table 7 for several energies and targets. Comparisons of the fit provided by equation (134)

with calculations are shown in figures 37-40 and are quite accurate. Note that the internal
motion of the projectile constituents leads to fragments produced with velocities higher than the

beam velocity.

Table 7. Spectrum Parameters for 4He Fragments

(a) A = 3 fragments

Target 5, A MeV W, A MeV

500A MeV
IH 8.5 31.0

12C 9.0 30.0

160 8.0 30.0
27AL 8.0 30.0

750A MeV

IH 8.5 35.0

12C 9.0 34.5
160 8.5 34.0

27AL 8.0 34.0

1000A MeV

1H 9.0 41.0

12C 9.5 41.0

160 8.0 42.0
27AL 8.0 42.0

(b) A - 1 fragment

Target 5, A MeV W, A MeV
500A MeV

1H 9 58

12C 10 60

160 10 60

27AL 10 65

750A MeV

1H 9 77
12C i0 77

160 10 78

27AL 10 82

1000A MeV

1H

12 C

160

27AL

9

10

10

10

87

88

90

95

The energy spectrum of the elastically scattered alpha particles is parameterized using the

Born term of the optical model expansion that is normalized to the coherent model results

(ref. 66). A similar approach is followed to parameterize the quasi-elastic energy spectrum.

Assuming a Gaussian density matrix for the target gives (from eq. (76))

da

dEa-----_ = 2mNZalNeX p [--2mNz (w -- t;B1)] 0 (_ -- eB1 ) (135)

where

(136)
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Figure 37. Comparison of calculation of energy spec-

trum for 4He+12C _ 3H+X at 520A MeV with

Gaussian fit of equation (134).
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Figure 38. Comparison of calculation of energy spec-

trum for 4He+160 --, 3H+X at 1000A MeV with

Gaussian fit of equation (134).
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Figure 39. Comparison of calculation of energy spec-
trum for 4He+27A1 ---, 3H+X at 1000A MeV with

Gaussian fit of equation (134).
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Figure 40. Comparison of calculation of energy spec-
trum for 4He+ill --* 2H+X at 500A MeV with

Gaussian fit of equation (134).

with Ra and RT denoting the matter radii of the alpha particle and target, respectively, and
B denoting the slope parameter. Equation (135) is expected to underestimate the spectrum
at large values of w because of multiple scattering and perhaps pion production. In figures 41
and 42, illustrations of the fit are shown.
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Figure 41. Parametric fits to a+27A1 _ a+X reaction
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Figure 42. Parametric fits to a+160 --* a+X reaction

at 100, 300, and 1000A MeV.

6. Concluding Remarks

An overview has been presented of calculations of interaction cross sections for high-energy
alpha particles colliding on nuclear targets. Models of elastic, quasi-elastic, and fragmentation
channels were described using multiple scattering theory in the impulse approximation. A
discussion of future theoretical emphasis was given with pion production at high energies
and nuclear medium effects at low energies identified as the principal areas of future work.

Extensive comparisons were made with existing experimental data for high-energy alpha particles
interacting with nuclear targets, and good agreement was found. Parametric energy-dependent
interaction cross sections and energy spectra are presented and discussed.

NASA Langley Research Center
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